The vertex of a parabola is the highest or lowest point on the curve, depending on its orientation. Its formula depends on the general form of the parabola’s equation.
1. Vertex Formula for a Parabola in Standard Form
For a quadratic equation in standard form:
y=ax2+bx+cy = ax^2 + bx + cy=ax2+bx+cThe x-coordinate of the vertex is given by:
x=−b2ax = -\frac{b}{2a}x=−2abTo find the y-coordinate, substitute x=−b2ax = -\frac{b}{2a}x=−2ab back into the equation:
y=a(−b2a)2+b(−b2a)+cy = a\left(-\frac{b}{2a}\right)^2 + b\left(-\frac{b}{2a}\right) + cy=a(−2ab)2+b(−2ab)+cThus, the vertex is at:
Vertex: (−b2a,y)\text{Vertex: } \left(-\frac{b}{2a}, y\right)Vertex: (−2ab,y)
Example 1: Finding the Vertex of a Parabola in Standard Form
Find the vertex of the parabola:
y=2×2−4x+1y = 2x^2 – 4x + 1y=2x2−4x+1Step 1: Identify coefficients aaa, bbb, and ccc:
a=2, b=−4, c=1a = 2, \, b = -4, \, c = 1a=2,b=−4,c=1Step 2: Calculate the x-coordinate:
x=−b2a=−−42(2)=44=1x = -\frac{b}{2a} = -\frac{-4}{2(2)} = \frac{4}{4} = 1x=−2ab=−2(2)−4=44=1Step 3: Substitute x=1x = 1x=1 into the equation to find yyy:
y=2(1)2−4(1)+1=2−4+1=−1y = 2(1)^2 – 4(1) + 1 = 2 – 4 + 1 = -1y=2(1)2−4(1)+1=2−4+1=−1Result: The vertex is at (1,−1)(1, -1)(1,−1).
2. Vertex Formula for a Parabola in Vertex Form
For a parabola in vertex form:
y=a(x−h)2+ky = a(x – h)^2 + ky=a(x−h)2+kThe vertex is directly given as:
Vertex: (h,k)\text{Vertex: } (h, k)Vertex: (h,k)
Example 2: Vertex in Vertex Form
Find the vertex of the parabola:
y=3(x−2)2+5y = 3(x – 2)^2 + 5y=3(x−2)2+5The equation is already in vertex form. Comparing it to y=a(x−h)2+ky = a(x – h)^2 + ky=a(x−h)2+k:
h=2, k=5h = 2, \, k = 5h=2,k=5Result: The vertex is at (2,5)(2, 5)(2,5).
3. Vertex Formula for a Parabola in General Form
For a parabola in general form:
Ax2+Bxy+Cy2+Dx+Ey+F=0Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0Ax2+Bxy+Cy2+Dx+Ey+F=0This case typically requires completing the square or advanced methods to rewrite the equation in standard or vertex form. Most commonly, the parabolas analyzed are already simplified to one of the forms above.
Key Observations
- In standard form (y=ax2+bx+cy = ax^2 + bx + cy=ax2+bx+c):
- Use x=−b2ax = -\frac{b}{2a}x=−2ab to find the x-coordinate of the vertex.
- In vertex form (y=a(x−h)2+ky = a(x – h)^2 + ky=a(x−h)2+k):
- The vertex is directly at (h,k)(h, k)(h,k).
Example 3: Graphical Interpretation
For the parabola y=−x2+4x−3y = -x^2 + 4x – 3y=−x2+4x−3:
- a=−1,b=4,c=−3a = -1, b = 4, c = -3a=−1,b=4,c=−3
- Find x=−b2a=−42(−1)=2x = -\frac{b}{2a} = -\frac{4}{2(-1)} = 2x=−2ab=−2(−1)4=2.
- Find yyy by substituting x=2x = 2x=2 into the equation: y=−22+4(2)−3=−4+8−3=1y = -2^2 + 4(2) – 3 = -4 + 8 – 3 = 1y=−22+4(2)−3=−4+8−3=1
- Vertex: (2,1)(2, 1)(2,1).
Let me know if you’d like assistance visualizing this!
You said:
ChatGPT said:
The vertex of a parabola is its highest or lowest point, depending on its orientation. The formula for the vertex depends on the equation of the parabola. Let’s break it down:
1. Parabola in Standard Form
The standard form of a parabola is:
y=ax2+bx+cy = ax^2 + bx + cy=ax2+bx+c
Vertex Formula:
The x-coordinate of the vertex is:
x=−b2ax = -\frac{b}{2a}x=−2abThe y-coordinate can be found by substituting x=−b2ax = -\frac{b}{2a}x=−2ab back into the equation:
y=a(−b2a)2+b(−b2a)+cy = a\left(-\frac{b}{2a}\right)^2 + b\left(-\frac{b}{2a}\right) + cy=a(−2ab)2+b(−2ab)+cThus, the vertex is:
Vertex: (−b2a,y)\text{Vertex: } \left(-\frac{b}{2a}, y\right)Vertex: (−2ab,y)
Example 1: Finding the Vertex of a Parabola in Standard Form
Find the vertex of the parabola:
y=2×2−4x+1y = 2x^2 – 4x + 1y=2x2−4x+1
- Identify coefficients:
a=2, b=−4, c=1a = 2, \, b = -4, \, c = 1a=2,b=−4,c=1
- Compute the x-coordinate of the vertex:
x=−b2a=−−42(2)=44=1x = -\frac{b}{2a} = -\frac{-4}{2(2)} = \frac{4}{4} = 1x=−2ab=−2(2)−4=44=1
- Compute the y-coordinate by substituting x=1x = 1x=1 into the equation:
y=2(1)2−4(1)+1=2−4+1=−1y = 2(1)^2 – 4(1) + 1 = 2 – 4 + 1 = -1y=2(1)2−4(1)+1=2−4+1=−1
Result: The vertex is at (1,−1)(1, -1)(1,−1).
2. Parabola in Vertex Form
The vertex form of a parabola is:
y=a(x−h)2+ky = a(x – h)^2 + ky=a(x−h)2+k
Vertex Formula:
The vertex is directly given as:
Vertex: (h,k)\text{Vertex: } (h, k)Vertex: (h,k)
Example 2: Finding the Vertex in Vertex Form
Find the vertex of the parabola:
y=3(x−2)2+5y = 3(x – 2)^2 + 5y=3(x−2)2+5Here, the equation is already in vertex form. Comparing it to y=a(x−h)2+ky = a(x – h)^2 + ky=a(x−h)2+k:
h=2, k=5h = 2, \, k = 5h=2,k=5Result: The vertex is at (2,5)(2, 5)(2,5).
3. Parabola Opening Sideways (Horizontal Parabola)
For a parabola that opens sideways, the equation is in terms of xxx:
x=a(y−k)2+hx = a(y – k)^2 + hx=a(y−k)2+h
Vertex Formula:
The vertex is directly given as:
Vertex: (h,k)\text{Vertex: } (h, k)Vertex: (h,k)
Example 3: Horizontal Parabola
Find the vertex of the parabola:
x=2(y+3)2−1x = 2(y + 3)^2 – 1x=2(y+3)2−1Here, comparing it to x=a(y−k)2+hx = a(y – k)^2 + hx=a(y−k)2+h:
h=−1, k=−3h = -1, \, k = -3h=−1,k=−3Result: The vertex is at (−1,−3)(-1, -3)(−1,−3).
Summary of Vertex Formulas
- Standard Form (y=ax2+bx+cy = ax^2 + bx + cy=ax2+bx+c):
- Vertex: (−b/2a,y)(-b / 2a, y)(−b/2a,y), where yyy is calculated by substituting x=−b/2ax = -b / 2ax=−b/2a into the equation.
- Vertex Form (y=a(x−h)2+ky = a(x – h)^2 + ky=a(x−h)2+k):
- Vertex: (h,k)(h, k)(h,k).
- Horizontal Parabola (x=a(y−k)2+hx = a(y – k)^2 + hx=a(y−k)2+h):
- Vertex: (h,k)(h, k)(h,k).
Let me know if you’d like additional examples or further clarification!